Цифровая фазовая модуляция: BPSK, QPSK, DQPSK. Квадратурная модуляция и ее характеристики (QPSK, QAM) Квадратурная фазовая модуляция qpsk

Цифровая фазовая модуляция: BPSK, QPSK, DQPSK. Квадратурная модуляция и ее характеристики (QPSK, QAM) Квадратурная фазовая модуляция qpsk

Не включается

Перспективные способы модуляции в широкополосных системах передачи данных

Сегодня специалистов в области коммуникаций уже не удивишь загадочным словосочетанием Spread Spectrum. Широкополосные (а именно они и скрываются за этими словами) системы передачи данных отличаются друг от друга способом и скоростью передачи данных, типом модуляции, дальностью передачи, сервисными возможностями и др. В предлагаемой статье предпринята попытка классифицировать широкополосные системы на основе используемой в них модуляции.

Основные положения

Широкополосные системы передачи данных (ШСПД) подчиняются в части протоколов единому стандарту IEEE 802.11, а в радиочастотной части - единым правилам FCC (Федеральной комиссии США по связи). Однако при этом они отличаются друг от друга способом и скоростью передачи данных, типом модуляции, дальностью передачи, сервисными возможностями и так далее.

Все эти характеристики играют важное значение при выборе ШСПД (потенциальным покупателем), и элементной базы (разработчиком, производителем систем связи). В настоящем обзоре предпринята попытка классифицировать ШСПД на основе наименее освещенной в технической литературе характеристики, а именно их модуляции.

Используя различные типы дополнительных модуляций, применяемых совместно с фазовой (BPSK) и квадратурной фазовой модуляцией (QPSK) для увеличения информационной скорости при передаче широкополосных сигналов в диапазоне 2,4 ГГц, можно достичь скорости передачи информации до 11 Мбит/с, принимая во внимание ограничения, накладываемые FCC на работу в этом диапазоне. Поскольку предполагается, что широкополосные сигналы будут передаваться без получения лицензии на частотный диапазон, то характеристики сигналов ограничиваются для уменьшения взаимной интерференции.

Данными типами модуляции являются различные формы М-ичной ортогональной модуляции (MOK), фазоимпульсная модуляция (PPM), квадратурная амплитудная модуляция (QAM). К широкополосным можно отнести также сигналы, получаемые при одновременной работе по нескольким параллельным каналам, разделяемым по частоте (FDMA) и/или по времени (TDMA). В зависимости от конкретных условий выбирается тот или иной тип модуляции.

Выбор типа модуляции

Основная задача любой системы связи - передача информации от источника сообщения к потребителю наиболее экономичным образом. Поэтому выбирают такой тип модуляции, который сводит к минимуму действие помех и искажений, достигая тем самым максимальной информационной скорости и минимального коэффициента ошибок. Рассматриваемые типы модуляции отбирались по нескольким критериям: устойчивость к многолучевому распространению; интерференция; количество доступных каналов; требования к линейности усилителей мощности; достижимая дальность передачи и сложность реализации.

DSSS-модуляция

Большинство из представленных в обзоре типов модуляции основаны на широкополосных сигналах, получаемых методом прямой последовательности (DSSS), - классических широкополосных сигналах. В системах с DSSS расширение спектра сигнала в несколько раз позволяет во столько же раз уменьшить спектральную плотность мощности сигнала. Расширение спектра обычно осуществляется путем умножения сравнительно узкополосного сигнала данных на широкополосный расширяющий сигнал. Расширяющий сигнал или расширяющий код часто называется шумоподобным кодом, или PN(pseudonoise)-кодом. Принцип описанного расширения спектра показан на рис. 1.

Bit period - период следования информационного бита
Сhip period - период следования чипа
Data signal - данные
PN-code - шумоподобный код
Coded signal - широкополосный сигнал
DSSS/MOK-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности, с М-ичной ортогональной модуляцией (или кратко MOK-модуляция) известны уже давно, но на аналоговых компонентах их довольно трудно реализовать. Применяя цифровые микросхемы, сегодня можно использовать уникальные свойства этой модуляции.

Разновидностью MOK является М-ичная двуортогональная модуляция (MBOK). Увеличение информационной скорости достигается за счет применения одновременно нескольких ортогональных PN-кодов при сохранении той же частоты следования чипов и формы спектра. MBOK-модуляция эффективно использует энергию спектра, то есть имеет достаточно высокое отношение скорости передачи к энергии сигнала. Она устойчива к интерференции и многолучевому распространению.

Из приведенной на рис. 2 схемы MBOK-модуляции совместно с QPSK видно, что PN-код выбирается из M-ортогональных векторов в соответствии с управляющим байтом данных. Так как I- и Q-каналы являются ортогональными, то они одновременно могут подвергаться MBOK. При двуортогональной модуляции используются и инвертированные векторы, что позволяет увеличить информационную скорость. Наибольшее распространение получило множество истинно ортогональных векторов Уолша с размерностью вектора кратной 2. Таким образом, применяя в качестве PN-кодов систему векторов Уолша с размерностью вектора 8 и QPSK, при скорости следования 11 мегачипов в секунду в полном соответствии со стандартом IEEE 802.11, можно в каждом канальном символе передавать 8 бит, получив скорость в канале 1,375 мегасимволов в секунду и информационную скорость 11 Мбит/с.

Модуляция позволяет достаточно просто организовать совместную работу с широкополосными системами, работающими со стандартной скоростью следования чипов и использующими только QPSK. В этом случае передача заголовка кадра происходит со скоростью в 8 раз меньшей (в каждом конкретном случае), что позволяет менее скоростной системе корректно воспринять этот заголовок. Затем происходит увеличение скорости передачи данных.
1. Входные данные
2. Скремблер
3. Мультиплексор 1:8
4. Выбор одной из 8 функций Уолша
5. Выбор одной из 8 функций Уолша
6. Выход I-канала
7. Выход Q-канала

Теоретически MBOK имеет несколько меньший коэффициент ошибок (BER) по сравнению с BPSK при том же самом отношении Eb/N0 (из-за свойств кодирования), что делает эту модуляцию наиболее эффективной по использованию энергии сигнала. В BPSK каждый бит обрабатывается независимо от другого, в MBOK распознается символ. Если он распознан неправильно, то это не значит, что все биты этого символа приняты ошибочно. Таким образом, вероятность принятия ошибочного символа не равна вероятности принятия ошибочного бита.

Спектр MBOK модулированных сигналов соответствует установленному в стандарте IEEE 802.11. В настоящее время фирма Aironet Wireless Communications, Inc. предлагает беспроводные мосты для сетей Ethernet и Token Ring, использующие технологию DSSS/MBOK и передающие информацию в эфир со скоростью до 4 Мбит/с.

Устойчивость к многолучевому распространению зависит от соотношения Eb/N0 и фазовых искажений сигнала. Численное моделирование передачи широкополосных сигналов с MBOK модуляцией, проведенное инженерами Harris Semiconductor внутри зданий подтвердило, что такие сигналы достаточно устойчивы к этим мешающим факторам1. См.: Andren C. 11 MBps Modulation Techniques // Информационный бюллетень Harris Semiconductor. 05/05/98.

На рис. 3 представлены графики зависимости вероятности принятия ошибочного кадра данных (PER) от расстояния при излучаемой мощности сигнала 15 дБ/МВт (для 5,5 Мбит/с - 20 дБ/МВт), полученные в результате численного моделирования, для различных информационных скоростей передачи данных.

Моделирование показывает, что с увеличением Es/N0, необходимого для надежного распознавания символа, существенно увеличивается PER в условиях сильного переотражения сигнала. Для устранения этого можно применять согласованный прием несколькими антеннами. На рис. 4 представлены результаты для данного случая. При оптимальном согласованном приеме PER будет равен квадрату PER несогласованного приема. При рассмотрении рис. 3 и 4 необходимо помнить, что при PER=15% фактическая потеря в информационной скорости составит 30% вследствие необходимости повторной передачи сбойных пакетов.

Необходимым условием применения QPSK совместно с MBOK является когерентная обработка сигнала. На практике это достигается приемом преамбулы и заголовка кадра с использованием BPSK для настройки фазовой петли обратной связи. Однако все это, как и использование последовательных корреляторов для когерентной обработки сигнала, увеличивает сложность демодулятора.

CCSK-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности с М-ичной ортогональной модуляцией и модуляцией циклическими кодами, (CCSK) проще демодулировать по сравнению с MBOK, поскольку используется только один PN-код. Этот тип модуляции возникает вследствие временного сдвига корреляционного пика внутри символа. Применяя код Баркера длиной 11 и скоростью 1 мегасимвол в секунду, можно сдвигать пик в одну из восьми позиций. Оставшиеся 3 позиции не позволяют их использовать для увеличения информационной скорости. Таким способом можно передавать три информационных бита на символ. Добавляя BPSK, можно передать еще один информационный бит на символ, то есть всего 4. В итоге с помощью QPSK получим 8 информационных бит на канальный символ.

Основной проблемой для PPM и CCSK является чувствительность к многолучевому распространению, когда задержка между переотражениями сигнала превышает длительность PN-кода. Поэтому внутри помещений с такими переотражениями эти типы модуляций трудно использовать. CCSK довольно просто демодулировать и при этом нужно лишь слегка усложнить традиционную схему модулятора/демодулятора. Схема CCSK аналогична схеме MBOK модуляции совместно с QPSK (см. рис. 2), только вместо блока выбора одной из 8 функций Уолша имеется блок сдвига слова.

DSSS/PPM-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности с фазоимпульсной модуляцией (DSSS/ PPM), - это тип сигналов, являющийся дальнейшим развитием сигналов с расширением спектра методом прямой последовательности.

Идея фазоимпульсной модуляции для обычных широкополосных сигналов заключается в том, что прибавка в информационной скорости получается за счет изменения интервала времени между корреляционными пиками последовательных символов. Модуляция была изобретена Rajeev Krishnamoorthy и Israel Bar-David в лаборатории Белла в Нидерландах.

Текущие реализации модуляции позволяют определить восемь временных положений корреляционных импульсов в интервале следования символа (внутри интервала следования PN-последовательности). Если такая технология применяется независимо на I- и Q-каналах в DQPSK, то получается 64 (8х8) различных информационных состояний. Объединяя фазоимпульсную модуляцию с DQPSK-модуляцией, обеспечивающей два различных состояния в I-канале и два различных состояния в Q-канале, получают 256 (64х2х2) состояний, что эквивалентно 8 информационным битам на символ.

DSSS/QAM-модуляция

Широкополосные сигналы, получаемые методом прямой последовательности, с квадратурной амплитудной модуляцией (DSSS/QAM) можно представлять как классические широкополосные сигналы с DQPSK-модуляцией, в которых информация передается еще и через изменение амплитуды. Применяя двухуровневую амплитудную модуляцию и DQPSK, получают 4 различных состояния в I-канале и 4 различных состояния в Q-канале. Модулированный сигнал можно подвергнуть еще и фазоимпульсной модуляции, что позволит увеличить информационную скорость.

Одним из ограничений применения DSSS/QAM является то, что сигналы с такой модуляцией довольно чувствительны к многолучевому распространению. Также вследствие применения одновременно и фазовой и амплитудной модуляции увеличивается соотношение Eb/N0 для получения того же значения BER, что и для MBOK.

Чтобы уменьшить чувствительность к искажениям, можно использовать эквалайзер. Но его применение нежелательно по двум причинам.

Во-первых, при этом необходимо увеличивать последовательность символов, настраивающую эквалайзер, что в свою очередь увеличивает длину преамбулы. Во-вторых, с добавлением эквалайзера возрастет стоимость системы в целом.

Дополнительная квадратурная модуляция может использоваться и в системах с Frequency Hopping. Так, фирма WaveAccess выпустила модем с торговой маркой Jaguar, который использует технологию Frequency Hopping, модуляцию QPSK совместно с 16QAM. В отличие от общепринятой в этом случае частотной FSK-модуляции это позволяет обеспечить реальную скорость передачи данных 2,2 Мбит/с. Инженеры фирмы WaveAccess считают, что применение технологии DSSS с более высокими скоростями (до 10 Мбит/с) нецелесообразно из-за незначительной дальности передачи (не более 100 м).

OCDM-модуляция

В широкополосных сигналах, получаемых мультиплексированием нескольких широкополосных сигналов с ортогональным кодовым уплотнением (Orthogonal Code Division Multiplex - OCDM), используется одновременно несколько широкополосных каналов на одной частоте.

Каналы разделяются за счет применения ортогональных PN-кодов. Фирма Sharp анонсировала 10-мегабитный модем, построенный по этой технологии. Фактически одновременно передаются 16 каналов с 16-чиповыми ортогональными кодами. В каждом канале применяется BPSK, затем каналы суммируются аналоговым методом.

Data Mux - мультиплексор входных данных

BPSK - блок фазовой модуляции

Spread - блок расширения спектра методом прямой последовательности

Sum - выходной сумматор

OFDM-модуляция

Широкополосные сигналы, получаемые мультиплексированием нескольких широкополосных сигналов с ортогональным частотным уплотнением (Оrthogonal Frequency Division Multiplex - OFDM), представляют собой одновременную передачу на разных несущих частотах сигналов с фазовой модуляцией. Модуляция описана в стандарте MIL-STD 188C. Одним из ее преимуществ является высокая устойчивость к провалам в спектре, возникающим вследствие многолучевого затухания. Узкополосное затухание может исключить одну или более несущих. Надежное соединение обеспечивается распределением энергии символа на несколько частот.

Это превышает спектральную эффективность аналогичной QPSK-системы в 2,5 раза. Существуют готовые микросхемы, реализующие OFDM-модуляцию. В частности, фирма Motorola выпускает OFDM-демодулятор МС92308 и "front-end" чип для OFDM МС92309. Схема типичного модулятора OFDM приведена на рис. 6.

Data mux - мультиплексор входных данных

Channel - частотный канал

BPSK - блок фазовой модуляции

Sum - сумматор частотных каналов

Заключение

В сравнительной таблице приведены оценки каждого типа модуляции по различным критериям и итоговая оценка. Меньшая оценка соответствует лучшему показателю. Квадратурная амплитудная модуляция берется лишь для сравнения.

При рассмотрении были отброшены различные типы модуляций, имеющие неприемлемые значения оценок различных показателей. Например, широкополосные сигналы с 16-позиционной фазовой модуляцией (PSK) - вследствие плохой устойчивости к интерференции, очень широкополосные сигналы - вследствие ограничений на протяженность частотного диапазона и необходимости иметь, как минимум, три канала для совместной работы расположенных рядом радиосетей.

Среди рассмотренных типов широкополосной модуляции наиболее интересной является М-ичная двуортогональная модуляция - MBOK.

В заключение хотелось бы отметить модуляцию, которая не вошла в серию экспериментов, проведенных инженерами Harris Semiconductor. Речь идет о фильтрованной QPSK-модуляции (Filtered Quadrature Phase Shift Keying - FQPSK). Данная модуляция была разработана профессором Kamilo Feher из Калифорнийского университета и запатентована совместно с фирмой Didcom, Inc.

Для получения FQPSK применяют нелинейную фильтрацию спектра сигнала в передатчике с последующим восстановлением его в приемнике. В результате спектр FQPSK занимает примерно в два раза меньшую площадь по сравнению со спектром QPSK при прочих равных параметрах. Кроме того, PER (коэффициент ошибок при передаче пакетов) FQPSK лучше аналогичного параметра у GMSK на 10-2-10-4. GSMK - это гауссовская частотная модуляция, используемая, в частности, в стандарте цифровой сотовой связи GSM. Новую модуляцию в достаточной мере оценили и применяют в своих изделиях такие компании, как EIP Microwave, Lockheed Martin, L-3 Communications, а также NASA.

Нельзя однозначно сказать, какая именно модуляция будет использоваться в ШСПД XXI века. С каждым годом в мире растет количество информации, следовательно, все больше информации будет передаваться по каналам связи. Поскольку частотный спектр представляет собой уникальный природный ресурс, то требования к спектру, используемому системой передачи, будут непрерывно расти. Поэтому выбор наиболее эффективного способа модуляции при разработке ШСПД продолжает оставаться одним из важнейших вопросов.

Рассмотрим открытий цикл регулирования мощности (менее точный). Подвижная станция после включения ищет сигнал базовой станции. После синхронизации подвижной станции по этому сигналу производится замер его мощности и вычисляется мощность передаваемого сигнала, необходимая для обеспечения соединения с базовой станцией. Вычисления основываются на том, что сумма уровней предполагаемой мощности излучаемого сигнала и мощности принятого сигнала должна быть постоянна и равна 73 дБ. Если уровень принятого сигнала, например, равен 85 дБ, то уровень излученной мощности должен быть равен ± 12 дБ. Этот процесс повторяется каждые 20 мс, но он все же не обеспечивает желаемой точности регулировки мощности, так как прямой и обратный каналы работают в разных частотных диапазонах (разнос частот 45 МГц) и, следовательно, имеют различные уровни затухания при распространении и по-разному подвержены воздействию помех.

Рассмотрим процесс регулирования мощности при замкнутом цикле. Механизм регулирования мощности при этом позволяет точно отрегулировать мощность передаваемого сигнала. Базовая станция постоянно оценивает вероятность ошибки в каждом принимаемом сигнале. Если она превышает программно заданный порог, то базовая станция дает команду соответствующей подвижной станции увеличить мощность излучения. Регулировка осуществляется с шагом 1 дБ. Этот процесс повторяется каждые 1,25 мс. Цель такого процесса регулирования заключается в том, чтобы каждая подвижная станция излучала сигнал минимальной мощности, которая достаточна для обеспечения приемлемого качества речи. За счет того, что все подвижные станции излучают сигналы необходимой для нормальной работы мощности, и не более; их взаимное влияние минимизируется, и абонентская емкость системы подрастает.

Подвижные станции должны обеспечивать регулирование выходной мощности в широком динамическом диапазоне – до 85 дБ.

6.2.12. Формирование QPSK сигнала

В системе CDMA IS-95 применяются квадратурная фазовая манипуляция

(QPSK – Quadrature Phase-shift Keying) базовой и смещенная QPSK в подвиж-

ных станциях. При этом информация извлекается путем анализа изменения фазы сигнала, поэтому фазовая стабильность системы - критичный фактор при обеспечении минимальной вероятности появления ошибки в сообщениях. Применение смещенной QPSK позволяет снизить требования к линейности усилителя мощности подвижной станции, так как амплитуда выходного сигнала при этом виде модуляции изменяется значительно меньше. До того, как интерференционные помехи будут подавлены методами цифровой обработки сигналов, они должны пройти через высокочастотный тракт приемника и не вызвать насыщения малошумящего широкополосного усилителя (МШУ) и смесителя. Это

заставляет разработчиков системы искать баланс между динамическими и шумовыми характеристиками приемника.

При квадратурной фазовой манипуляции двум битам соответствует 4 значения фазы излучаемого сигнала в зависимости от значений этих битов (рис. 6.39), то есть одним значением фазы можно передать сразу значение 2 битов.

Рис. 6.39. Диаграмма значений фазы при QPSK модуляции

Поток данных делится на четные и нечетные биты (рис. 6.40). Далее процесс идет параллельно в синфазном и квадратурном каналах. После преобразования в NRZ (non-return-to-zero – без возврата к нулю) кодере получается двухполярный сигнал (рис. 6.41). Затем сигнал модулируется с помощью двух ортогональных функций. После суммирования сигналов двух каналов получим квадратурно модулированный (QPSK) сигнал.

Рис. 6.40. Схема формирования QPSK сигнала

Рис. 6.41. Код без возврата к нулю

Модулированный сигнал во временной области показан на рис. 6.42 и представляет собой короткий отрезок случайной битовой последовательности. На рисунке видны фрагменты синусоиды и косинусоиды, используемые в синфазном и квадратурном каналах. На рисунке использована битовая последовательность: 1 1 0 0 0 1 1 0 , которая делится на последовательность четных и нечетных битов. Ниже показан суммарный QPSK сигнал.

Рис. 6.42. QPSK сигнал во временной области

На приемной стороне происходит обратный процесс (рис. 6.43). В каждом канале используется согласованный фильтр. Детектор соответствующего канала использует относительную величину порога для принятия решения: принят 0 или 1. Анализ идет по кадрам, соответствующим времени передачи одного символа.

В мобильный станциях используется смещенная квадратурная модуляция (OQPSK – Offset QPSK). В одном из каналов битовую последовательность задерживают на время, соответствующее половине длительности передаваемого символа. В этом случае составляющий синфазного и квадратурного каналов никогда не изменяют свой фазовый сдвиг одновременно (рис. 6.44). Максимальный скачок фазы составляет 90 градусов. Это делает флюктуации амплитуды сигнала значительно меньшими. Данный эффект

туды сигнала значительно меньшими. Данный эффект хорошо виден при сравнении с QPSK модуляцией той же битовой последовательностью (рис. 6.42).

Рис. 6.43. Демодуляций QPSK сигнала в приемнике

Рис. 6.44. ОQPSK сигнал во временной области

Передача сообщений в стандарте IS-95 осуществляется кадрами. Используемые принципы приема позволяют анализировать ошибки в каждом информационном кадре. Если количество ошибок превышает допустимый уровень, приводящий к недопустимому ухудшению качества речи, этот кадр стирается

(frame erasure).

С частотой ошибок или " частотой стирания битов " однозначно связано отношение энергии информационного символа к спектральной плотности шума Eo/No. На рис. 6.45 приведены зависимости вероятности ошибки в кадре (Prob. Frame Error) от величины отношения Eo/No для прямого и обратного каналов с учетом модуляции, кодирования и перемежения.

При увеличении количества активных абонентов в соте из-за взаимных помех отношение Eo/No снижается, а частота ошибок увеличивается. В этой связи разные фирмы принимают свои допустимые значения частоты ошибок. Например, фирма Motorola считает допустимой для CDMA IS-95 частоту ошибок в 1%, что соответствует с учетом замираний отношению Eo/No =7 – 8 дБ. При этом пропускная способность систем IS-95 в среднем в 15 раз превышает пропускную способность аналоговых систем AMPS.

Фирма Qualcomm за допустимую величину частоты ошибок принимает значение 3%. Это является одной из причин, по которым Qualcomm заявляет, что емкость CDMA IS-95 в 20 - 30 раз превышает емкость аналоговых AMPS.

Отношение Eo/No = 7 – 8 дБ и допустимая частота ошибок в 1% позволяет организовать 60 активных каналов на трехсекторную соту. Зависимость количества активных каналов связи (ТСН) для обратного канала от величины отношения Eo/No для 3-х секторной соты показана на рис. 6.46.

Рис.6.45. Зависимость вероятности ошибки в кадре от уровня сигнала

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


Рисунок 1. Полярная диаграмма сигнала четырехпозиционной фазовой модуляции QPSK

На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и . На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. такого модулятора приведена на рисунке 2.



Рисунок 2. Структурная схема модулятора QPSK – NRZ

Так как при этом в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих — синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.



Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ

Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.



Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста

Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 4, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5. Сигнал на графике выглядит непрерывным благодаря достаточно высокой частоте дискретизации.



Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK

Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.



Рисунок 6. глазковая диаграмма сигнала на входе Q модулятора

Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.


Рисунок 7 векторная диаграмма QPSK сигнала c α = 0.6

Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.



Рисунок 8. временная диаграмма QPSK сигнала c α = 0.6

Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6 . При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.



Рисунок 9 – спектрограмма QPSK сигнала c α = 0.6

Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976 стр. 6
  2. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 32

Вместе со статьей "Четырехпозиционная фазовая модуляция (QPSK)" читают:


http://сайт/UGFSvSPS/modul/DQPSK/


http://сайт/UGFSvSPS/modul/BPSK/


http://сайт/UGFSvSPS/modul/GMSK/


http://сайт/UGFSvSPS/modul/FFSK/

ЛикБез > Радиосвязь

Четырехпозиционная фазовая модуляция (QPSK)

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и сумматор. На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. Структурная схема такого модулятора приведена на рисунке 2.


Так как при этом виде модуляции в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих - синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.

Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ


Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.

Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста


Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 17, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5.

Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK


Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.


Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.

Рисунок 7 векторная диаграмма QPSK сигнала c a = 0.6


Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.

Рисунок 8. временная диаграмма QPSK сигнала c a = 0.6


Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6. При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.

Рисунок 9 – спектрограмма QPSK сигнала c a = 0.6


Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот MSK позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

где A и φ 0 – постоянные, ω – несущая частота.

Информация кодируется фазой φ(t) . Так как при когерентной демодуляции в приемнике имеется восстановленная несущая s C (t) = Acos(ωt +φ 0) , то путем сравнения сигнала (2) с несущей вычисляется текущий сдвиг фазы φ(t) . Изменение фазы φ(t) взаимнооднозначно связано с информационным сигналом c(t).

Двоичная фазовая модуляция (BPSK – BinaryPhaseShiftKeying)

Множеству значений информационного сигнала {0,1} ставится в однозначное соответствие множество изменений фазы {0, π}. При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, s (t )= A ⋅2(c (t )-1/2)cos(ωt + φ 0) .Таким образом, для осуществленияBPSK модуляции достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений {-1,1}. На выходе baseband-модулятора сигналы

I (t)=A ⋅2(c (t )-1/2), Q(t)=0

Временная форма сигнала и его созвездие показаны на рис.3.

Рис. 12.Временная форма и сигнальное созвездие сигнала BPSK:a– цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Квадратурная фазовая модуляция (QPSK – QuadraturePhaseShiftKeying)

Квадратурная фазовая модуляция является четырехуровневой фазовой модуляцией (M=4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества {±π / 4,±3π / 4} и множеством символов цифрового сообщения {00, 01, 10, 11} устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием, аналогичным рис.4. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Рис. 13. Сигнальное созвездие модуляции QPSK

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Многопозиционная фазовая модуляция (M-PSK)

M-PSK формируется, как и другие многопозиционные виды модуляции, путем группировки k = log 2 M бит в символы и введением взаимно-однозначного соответствия между множеством значений символа и множеством значений сдвига фазы модулированного колебания. Значения сдвига фазы из множества отличаются на одинаковую величину. Для примера на рис.4 приведено сигнальное созвездие для 8-PSK с кодированием Грея.

Рис. 14. Сигнальное созвездие модуляции 8-PSK

Амплитудно-фазовые виды модуляции (QAM)

Очевидно, для кодирования передаваемой информации можно использовать не один параметр несущего колебания, а два одновременно.

Минимальный уровень символьных ошибок будет достигнут в случае, если расстояние между соседними точками в сигнальном созвездии будет одинаковым, т.е. распределение точек в созвездии будет равномерным на плоскости. Следовательно, сигнальное созвездие должно иметь решетчатый вид. Модуляция с подобным видом сигнального созвездия называется квадратурной амплитудной модуляцией (QAM – QuadratureAmplitudeModulation).

QAM является многопозиционной модуляцией. При M=4 она соответствует QPSK, поэтому формально считается для QAM M ≥ 8 (т.к. число бит на символ k = log 2 M ,k∈N , то M может принимать только значения степеней 2: 2, 4, 8, 16 и т.д.). Для примера на рис.5 приведено сигнальное созвездие 16-QAM с кодированием Грея.

Рис. 15. Сигнальное созвездие модуляции 16 –QAM

Частотные виды модуляции (FSK, MSK, M-FSK, GFSK, GMSK).

В случае осуществления частотной модуляции параметром несущего колебания – носителем информации – является несущая частота ω(t) . Модулированный радиосигнал имеет вид:

s(t)= Acos(ω(t)t +φ 0)= Acos(ω c t +ω d c(t)t +φ 0)=

Acos(ω c t +φ 0) cos(ω d c(t)t) − Asin(ω c t+φ 0)sin(ω d c(t)t),

где ω c – постоянная центральная частота сигнала, ω d – девиация (изменение) частоты, c(t) –информационный сигнал, φ 0 –начальная фаза.

В случае, если информационный сигнал имеет 2 возможных значения, имеет место двоичная частотная модуляция (FSK – FrequencyShiftKeying). Информационный сигнал в (4) является полярным, т.е. принимает значения {-1,1}, где -1 соответствует значению исходного (неполярного) информационного сигнала 0, а 1 – единице. Таким образом, при двоичной частотной модуляции множеству значений исходного информационного сигнала {0,1} ставится в соответствие множество значений частоты модулированного радиосигнала {ω c −ω d ,ω c +ω d } . Вид сигнала FSK изображен на рис.1.11.

Рис. 16. Сигнал FSK: а – информационное сообщение; б- модулирующий сигнал; в – модулирование ВЧ-колебание

Из (4) следует непосредственная реализация FSK-модулятора: сигналы I(t) и Q(t) имеют вид: I (t) = Acos(ω d c(t)t) , Q(t) = Asin(ω d c(t)t) . Так как функции sin и cos принимают значения в интервале [-1..1], то сигнальное созвездие сигнала FSK – окружность с радиусом A.