В эвм используется. Электронная вычислительная техника

В эвм используется. Электронная вычислительная техника

Не работает

Для изображения чисел используются определенные приемы и правила, называемые системами счисления. Все известные системы счисления делятся на две группы: позиционные системы счисления и непозиционные системы счисления.

Непозиционной системой счисления называется такая система, в которой значение символа, цифры, знака или иероглифа не зависит от позиции этого символа в изображаемом числе. В позиционных системах наоборот, значение символа зависит от позиции этого символа в изображаемом числе. Непозиционные системы, как более простые, появились исторически гораздо более раньше позиционных систем. Ими пользовались древние славяне, китайцы и другие народы.

До наших дней дошла одна из разновидностей непозиционных систем - римская система счисления. В ней используются так называемые римские цифры: I - 1, V - 5, X - 10, L - 50, C - 100, D - 500, M - 1000. Значение числа вычисляется суммированием всех чисел с учетом правила, что если цифра меньшего веса стоит слева от следующей за ней цифрой большего веса, то она имеет знак минус, а если справа - то знак плюс. Например, число MCCXXXIV определяется следующим образом:

1000 + 100 + 100 + 10 + 10 + 10 - 1 + 5 = 1234

Непозиционные системы счисления обладают двумя существенными недостатками. Во-первых, при увеличении диапазона представленных чисел увеличивается число различных символов в изображаемых числах. Во-вторых, очень сложны правила выполнения даже самых простых арифметических действий.

Позиционные системы счисления обладают тем чрезвычайно важным свойством, что все числа, и малые, и большие, могут быть записаны с помощью конечного набора различных символов. Кроме того, правила действия с числами могут быть резюмированы в виде таблиц сложения и умножения. Изобретение позиционных систем счисления имело неоценимые последствия для дальнейшего развития человеческой цивилизации. Впервые такие системы счисления стали использовать древние шумерийцы и индусы.

В позиционных системах счисления любое число X изображается в виде полинома



B этом выражении aj называются коэффициентами, а S - основанием системы счисления. Значение любого коэффициента в изображаемом числе может лежать в диапазоне 0...(S-1) . В настоящее время во всех странах мира используется десятичная система счисления, представляющая собой позиционную систему счисления с основанием S =10. Коэффициенты при изображении чисел в десятичной системе счисления могут принимать значения в диапазоне от 0....9. Для краткости вместо записи числа в виде полинома записывают только последовательность коэффициентов этого полинома. Когда мы пишем десятичное число X= 94,46 , то подразумеваем величину

Значение первой цифры слева от запятой, отделяющей целую часть числа от его дробной части, соответствует значению изображенной цифры (говорят, что ее “вес” равен единице); значение следующей цифры слева равно десятикратному значению изображаемой цифры (“вес” цифры - 10) и т.д. Значение цифры справа от запятой равняется десятой части написанной цифры, (ее “вес” равен 0,1) следующей - сотой части и т. д.

В принципе, роль основания способно играть любое целое число, большее единицы. Возьмем, например, десятичное число 437. Вполне возможно записать это число и как

где индекс 8 у числа 665 указывает, что мы имеем дело с числом, при записи которого вместо обычного основания S =10 используется основание S =8. Числа, записанные в системе счисления с основанием 8, называются восьмеричными.

То же самое десятичное число 437 можно записать в виде

Числа, записанные в системе счисления с основанием 16, называются шестнадцатеричными (А соответствует цифре 10 в десятичной системе).

Простейшей позиционной системой счисления является система с основанием S =2. В этой системе число

Преимущество использования двойки в качестве основания системы счисления состоит в том, что требуются только две различные цифры для записи любого числа - 0 и 1. Недостаток двоичной системы в том, что для изображения числа в двоичной форме требуется примерно в 3,3 раза больше цифр, чем в десятичной.

Подобно тому, как для записи десятичных чисел используют десять различных цифр (09), для написания двоичных чисел применяют две различные цифры (0 и 1), восьмеричных - восемь (07) и шестнадцатеричных - 16. Так как только десять цифр из шестнадцати имеют общепринятые обозначения арабскими цифрами 09, то для записи остальных цифр 1015 шестнадцатеричных чисел используют символы латинского алфавита AF (A соответствует цифре 10, В - 11, C - 12, D - 13, E - 14, F - 15). Так, например, шестнадцатеричное число соответствует десятичному числу 46, так как .

С дробными числами при любом основании обращаются так же, как и в десятичной системе. Необходимо лишь учитывать то обстоятельство что конечная дробь в одной системе счисления может стать периодической в другой. Так, например,

Но .

В ЭВМ используются позиционные системы счисления с основаниями 2, 8, 16, 10. Основной системой счисления является двоичная. Во-первых, в этой системе счисления, как уже говорилось, для изображения чисел необходимы только комбинации двух цифр: 0 и 1. Эти две цифры можно изображать элементами, имеющими два различных состояния. Одному состоянию, причем любому, можно поставить в соответствие цифру 0, а другому - 1. Такие элементы называются двухпозиционными (две позиции - два состояния) и они исключительно легко изготавливаются технически.

Для сравнения укажем, что для изображения одной десятичной цифры необходимо иметь элемент, имеющий 10 четко выраженных различных состояний. В принципе, логика выполнения арифметических операций в двоичной системе счисления наиболее проста. Это наглядно на примере сравнения таблиц умножения десятичных цифр с одной единственной таблицей умножения двоичных цифр имеющей вид:

00=0; 01=0; 10=0; 11=1.

Из приведенных примеров видно, что десятичная система счисления крайне неудобна для использования в ЭВМ, но она общепринята, и поэтому, не смотря на свои недостатки, так же нашла применение в вычислительной технике. Для того чтобы ввести в ЭВМ десятичные числа, отобразить их состояниями двухпозиционных элементов, используется так называемая двоично-десятичная форма представления десятичных чисел. В этой форме каждая цифра десятичной записи числа изображается в виде четырехразрядного двоичного числа (двоичной тетрады). Например, десятичное число X 10 =481,75 в двоично-десятичной форме будет иметь вид:

X 2-10 = 0100 1000 0001, 0111 0101.

Нельзя путать двоично-десятичную форму записи числа с двоичной записью того же числа! В первом случае основание системы счисления остается равным десяти - только коэффициенты при основании выражены в двоичной форме.

Восьмеричная и шестнадцатеричная форма записи в основном используются при программировании задач для ЭВМ и введения компактных записей во время отладки программ. Достоинства этих форм записи числа - легкость перевода из двоичной формы в восьмеричную (шестнадцатеричную) и наоборот, с одной стороны, и компактность изображения чисел, с другой стороны. Например, чтобы перевести шестнадцатеричное число X 16 =1FA,0F в двоичную форму, необходимо каждую шестнадцатиричную цифру представить эквивалентным четырехразрядным двоичным числом. В итоге получим:

0111 1111 1011, 0000 1110.

Аналогично для восьмеричного 34:

В таблице 4.1 приведены различные формы записи двадцати чисел натурального ряда.


Таблица 4.1. Различные формы записи двадцати чисел натурального ряда

Десятичное число Двоичное число Восьмеричное число Шестнадцати-ричное число Двоично-десятичное число
A 0001 0000
B 0001 0001
C 0001 0010
D 0001 0011
E 0001 0100
F 0001 0101
0001 0110
0001 0111
0001 1000
0001 1001
0010 0000

Необходимо особо подчеркнуть:

1. Количество, которое отражает цифровая запись числа остается неизменным, независимо от системы счисления;

2. Правила выполнения арифметических операций над многоразрядными числами представленными в позиционных системах счисления с различными основаниями, одни и те же.

3. Правила сложения и умножения одноразрядных чисел для каждой системы счисления определяются своими таблицами умножения и сложения.

Рассмотрим пример. Пусть нам необходимо найти произведение двух восьмеричных чисел: X 8 =35´12 (эти числа соответствует десятичным 29 и 10 соответственно).

Будем умножать “столбиком”:


Ответ: X 8 =4314=644=6 +4

Умножая 4 на 3 в восьмеричной системе, получаем результат 14 8 (это соответствует 12 в десятичной системе). Следовательно, согласно правилам, в данном разряде записывается число 4, а единица переноса запоминается. Умножая далее 4 на 4 получаем 20 в восьмеричной ситсеме, а с учетом единицы переноса - цифру 21. Таким образом, результатом умножения восьмеричного числа 43 на цифру 4 будет восьмеричное число 214. Аналогично умножается множимое 43 на следующую цифру множителя 431=43. При сложении полученных таким образам частичных сумм необходимо пользоваться соответствующими таблицами сложения. Окончательный ответ в восьмеричной форме 644 соответствует десятичному числу 420.

Порядок вычислений на ЭВМ обычно таков. Исходные числовые данные вводятся в ЭВМ в обычной для человека десятичной форме (например, с помощью клавиатуры - устройства ввода). ЭВМ имеют в своем составе специальные устройства, называемые шифраторами, которые осуществляют автоматический перевод вводимой десятичной информации в двоично-десятичную форму. По специальной подпрограмме или схеме (разработаны специальные большие интегральные схемы, осуществляющие автоматический перевод чисел из двоично-десятичной записи в двоичную запись и наоборот) числовая информация из двоично-десятичной формы переводится в двоичную запись. Затем производятся необходимые вычисления в двоичной системе счисления. Если необходимо выдавать какие-то результаты вычислений в десятичной форме, то эти данные, программно или с помощью специальных микросхем, переводятся сначала в двоично-десятичную форму, а затем с помощью устройств вывода выдаются непосредственно в десятичной форме (например, печатаются на бланке или высвечиваются на экране дисплея).

Такой порядок вычислений используется при решении научно-технических задач. В таких задачах количество исходных числовых данных и результатов вычислений сравнительно невелико по сравнению с количеством операций, необходимых для решения задач.

В то же время имеется достаточно большой класс задач, отличающийся обилием входных и выходных данных и требующих для своего решения небольшого числа вычислительных операций (например начисление зарплаты рабочим и служащим, расчет квартплаты). Для таких задач описанный выше порядок вычислений не является оптимальным из-за низкой производительности ЭВМ - слишком много времени она будет тратить на переводы числовой информации из двоично-десятичной формы в двоичную и наоборот. Для решения указанных задач разработаны оптимальные методы вычислений непосредственно в двоично-десятичной форме. В современных ЭВМ в системе команд обязательно присутствуют как группа команд, выполняющих операции в двоичной системе счисления (команды двоичной арифметики), так и группа команд, выполняющих операции в двоично-десятичной системе счисления (команды десятичной арифметики).

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить.

Сегодня, кроме привычных компьютеров с клавиатурами, мониторами, дисководами, мир современной техники наполнен компьютерами-невидимками - микропроцессорами, который представляет собой компьютер в миниатюре.

Кроме обрабатывающего блока, он содержит блок управления и даже память (внутренние ячейки памяти). Это значит, что микропроцессор способен автономно выполнять все необходимые действия с информацией.

Массовое распространение микропроцессоры получили везде, где управление может быть сведено к отдаче ограниченной последовательности команд. Среди них выделяют: многопользовательские, оборудованные многими выносными терминалами и работающие в режиме разделения времени; встроенные, которые могут управлять станком, какой-либо подсистемой автомобиля, другого устройства, будучи его малой частью. Эти встроенные устройства (их называют контроллерами) выполняются в виде небольших плат.

Таким образом, созданные на основе микропроцессора вычислительные машины (микро-ЭВМ) незаменимы в современной технике.

Применение микропроцессоров даже лет 30 назад было около 2000 различных сфер: это управление производством (16%), научные исследования, транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), коммунальное и городское хозяйство, банковский учёт, метрология, медицина (4%) и другие области.

В настоящее время области их применения можно разделить на группы.

Научно-технические применения. Для них характерно требование высокого быстродействия. Это те области науки и техники, где крайне необходимо применение вычислительных машин: ядерная физика, метеорология, ракетная техника, медицина.

Обработка данных. Здесь выдвигается требование большого объема запоминающих устройств. В этой группе решаются задачи из областей статистики, материально-технического снабжения, бухгалтерского учета, планирования, резервирования билетов, разработки сетевых графиков и т.д.

Моделирование. Вычислительные машины используются для моделирования различных сложных явлений в экономике, автоматике, биологии, военном деле и т.д.

Управление производственными процессами. В этом случае машина работает в так называемом реальном масштабе времени, когда арифметические и логические операции выполняются во время протекания самих производственных процессов. Роль управляющей машины может сводиться к выполнению следующих функций:

Полному информированию оператора о ходе процесса;

Сигнализации, когда существенные для протекания процесса параметры выходят за допустимые пределы;

Автономному (без участия человека) управлению протеканием процесса.

Микропроцессоры получили массовое распространение в производстве, где управление может быть сведено к отдаче ограниченной последовательности команд. Например, развиваются следующие направления автоматизации с применением микропроцессорной техники систем управления:

Станки с ЧПУ плюс робот;

Станки с ЧПУ плюс робот плюс устройство активного контроля размеров;

Станки с ЧПУ плюс робот плюс система автоматической диагностики с самовозвратом.

Сегодня вся современная техника, как бытового, так и промышленного применения, представляет собой сложные технические системы, реализованные на базе микроэлектроники и средств вычислительной техники.

Вычислительные средства являются важнейшей составной частью различных устройств техники: радиоэлектронной аппаратуры, стиральных машин, холодильников, машин химической чистки одежды и прочих технических устройств разнообразного назначения, в том числе и военного. Так, немыслимо без использования микропроцессоров управление современным двигателем - обеспечение экономии расхода топлива, ограничение максимальной скорости движения, контроль исправности и т.д.

Наибольший эффект применения микропроцессоров достигается при встраиваемом варианте его использования, когда они встраивается внутрь приборов, устройств или машин. В настоящее время используются бытовые холодильники, стиральные машины-автоматы, печи СВЧ, телевизионные приемники, видеомагнитофоны и проигрыватели со встроенными микропроцессорами.

Таким образом, использование микропроцессоров в оборудовании позволяет повысить производительность тяжелого ручного труда, повысить качество товаров и услуг. Встраивание микропроцессоры в станки, оборудование и приборы поможет решить сложные проблемы программного регулирования технологическими процессами.

ЭВМ находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов.

Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов.

Также управляются компьютером роботы на заводах, например на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.

Рассматривая использование ЭВМ в технологическом управлении, можно выделить целую группу применений, связанных с измерениями и отображениями измеренного состояния. ЭВМ оказались информационным ядром принципиально новых средств производства; гибких производственных систем (ГПС) и измерительных комплексов.

Создание на основе ЭВМ контрольно-измерительной аппаратуры, с помощью которой можно проверять изделия прямо на производственной линии, является одной из новых областей применения ЭВМ на предприятиях. Использование ЭВМ в качестве контрольно-измерительных приборов экономически более эффективно, чем выпуск в ограниченных количествах специализированных сложных приборов с вычислительными блоками. Большой эффект в машиностроении дают ГПС, состоящие из станков с числовым программным управлением, автоматизированных складских и транспортных систем, управляемых при помощи ЭВМ.

В системах управления сложными технологическими процессами за работой технологического комплекса следят многочисленные датчики-приборы, измеряющие параметры технологического процесса (например, температуру и толщину прокатываемого металлического листа), контролирующие состояние оборудования (например, температуру подшипников турбины) или определяющие состав исходных материалов и готового продукта. Таких приборов в одной системе может быть от нескольких десятков до нескольких тысяч.

Датчики постоянно выдают сигналы, меняющиеся в соответствии с измеряемым параметром (аналоговые сигналы), в устройство связи с объектом ЭВМ, где сигналы преобразуются в цифровую форму и затем по определенной программе обрабатываются вычислительной машиной. ЭВМ сравнивает полученную от датчиков информацию с заданными результатами работы агрегата и вырабатывает управляющие сигналы, которые поступают на регулирующие органы агрегата. Например, если датчики подали сигнал, что лист прокатного стана выходит толще, чем предписано, то ЭВМ вычислит, на какое расстояние нужно сдвинуть валки прокатного стана и подаст соответствующий сигнал на исполнительный механизм, который переместит валки на требуемое расстояние.

Одним из важнейших свойств системы управления сложными технологическими процессами является обеспечение безаварийной работы сложного технологического комплекса. Для этого предусматривается возможность диагностирования технологического оборудования. На основе показаний датчиков система определяет текущее состояние агрегатов и тенденции к аварийным ситуациям и может дать команду на ведение облегченного режима работы или остановку вообще. При этом оператору представляют данные о характере и местоположении аварийных участков.

Таким образом, применение ЭВМ обеспечивает лучшее использование ресурсов производства, повышение производительности труда, экономию сырья, материалов и энергоресурсов, исключение тяжелых аварийных ситуаций, увеличение межремонтных периодов работы оборудования.

ЭВМ используется в техническом оснащении магазинов самообслуживания: покупки пропускают через оптическое сканирующее устройство, которое считывает универсальный код, нанесённый на покупку, по которому компьютер определяет, цену этого изделия, хранящуюся в памяти компьютера, и высвечивает ее на маленьком экране, чтобы покупатель мог видеть стоимость своей покупки. Как только все отобранные товары прошли через оптическое сканирующее устройство, компьютер немедленно выдаёт общую стоимость купленных товаров.

Мощные вычислительные системы применяются в банковских операциях, что позволяет выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк.

Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка.

Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт.

Чрезвычайно возрос уровень применения ЭВМ в медицине, которая становится все более и более автоматизированной. Сложные современные исследования в медицине не мыслимы без применения вычислительной техники.

К таким исследованиям можно отнести компьютерную томографию, томографию с использованием явления ядерно-магнитного резонанса, ультрасонографию, исследования с применением изотопов.

В медицине широко применяются и экспертные системы, основное назначение которых - медицинская диагностика. Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами.

Кроме того, ЭВМ применяется для формирования различного рода двигательных навыков в составе тренажеров при обучении различным профессиям: летчиков, машинистов, водителей и других.

Итак, развитие вычислительной техники и сферы ее использования - процессы взаимосвязанные и взаимообусловленные.

С одной стороны, потребности народного хозяйства стимулируют поиски учеными новых путей построения ЭВМ, а с другой стороны, появление ЭВМ с большими функциональными возможностями, с существенно улучшенными показателями по производительности, надежности и т.п., создает предпосылки для непрерывного расширения областей и развития форм применения ЭВМ.

электронный вычислительный микропроцессор моделирование

От того, какая система счисления будет использована в ЭВМ, зависят скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических операций.

Дело в том, что для физического представления (изображения) чисел необходимы элементы, способные находиться в одном из нескольких устойчивых состояний. Число этих состояний должно быть равно основанию используемой системы счисления. Тогда каждое состояние будет представлять соответствующую цифру из алфавита данной системы счисления.

Десятичная система счисления, привычная для нас, не является наилучшей для использования в ЭВМ. Для изображения любого числа в десятичной системе счисления требуется десять различных символов. При реализации в ЭВМ этой системы счисления необходимы функциональные элементы, имеющие ровно десять устойчивых состояний, каждое из которых ставится в соответствие определенной цифре. Так, в арифмометрах используются вращающиеся шестеренки, для которых фиксируется десять устойчивых положений. Но арифмометр и другие подобные механические устройства имеют серьезный недостаток - низкое быстродействие.

Создание электронных функциональных элементов, имеющих много устойчивых состояний, затруднено. Наиболее простыми с точки зрения технической реализации являются так называемые двухпозиционные элементы, способные находиться в одном из двух устойчивых состояний, например:

· электромагнитное реле замкнуто или разомкнуто;

· ферромагнитная поверхность намагничена или размагничена;

· электронная вакуумная лампа (для первых ЭВМ) включена или выключена;

· магнитный сердечник намагничен в некотором направлении или в противоположном ему;

· транзисторный ключ находится в проводящем или запертом состоянии;

· участок поверхности магнитного носителя информации намагничен или размагничен;

· участок поверхности лазерного диска отражает или не отражает и т.д.

Одно из этих устойчивых состояний может представляться цифрой 0, другое - цифрой 1. С двоичной системой связаны и другие существенные преимущества. Она обеспечивает максимальную помехоустойчивость в процессе передачи информации как между отдельными узлами автоматического устройства, так и на большие расстояния. В ней предельно просто выполняются арифметические действия и возможно применение аппарата булевой алгебры для выполнения логических преобразований информации.

Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.

Широкое применение в ЭВМ нашли также восьмеричная и шестнадцатеричная системы счисления. Обмен информацией между устройствами большинства ЭВМ осуществляется путем передачи двоичных слов. Пользоваться такими словами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) как на этапах составления несложных программ для микроЭВМ, их отладки, ручного ввода-вывода данных, так и на этапах разработки, создания, настройки вычислительных систем заменяют коды машинных команд, адреса и операнды на эквивалентные им величины в восьмеричной или шестнадцатеричной системе счисления. В результате длина исходного слова сокращается в 3 или 4 раза соответственно. Это делает информацию более удобной для рассмотрения и анализа. Таким образом, восьмеричная и шестнадцатеричная системы счисления выступают в качестве простейшего языка общения человека с ЭВМ, достаточно близкого как к привычной для человека десятичной системе счисления, так и к двоичному "языку" машины.

В ЭВМ используется только двоичная система счисления. Вся логика основана на принципе сигнал есть - 1,сигнала нет - 0. Все остальное это представление чисел.
Способы быстрого преревода:
из двоичной в шестнодцатиричную:
Разбиваешь двоичное число на отрезки по четыре бита и
0000 - 0h
0001 - 1h
0010 - 2h
0011 - 3h
0100 - 4h
0101 - 5h
0110 - 6h
0111 - 7h
1000 - 8h
1001 - 9h
1010 - Ah
1011 - Bh
1100 - Ch
1101 - Dh
1110 - Eh
1111 - Fh
таким образом твое число в 16-ричной
1001 0101 0110 0111 - 9567h
Ну а для восьмиричной сообразишь сам.

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

3. Системы счисления, используемые в ЭВМ. Перевод из двоичной, восьмеричной и шестнадцатеричной в десятичную систему счисления.

Электронная вычислительная машина - это комплекс технических и программных средств, предназначенные для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ.

Структура - это совокупность элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств.

Архитектура ЭВМ - это многоуровневая иерархия аппаратурно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уровней определяет особенности структурного построения ЭВМ.

Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры - схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программисты создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач.

Структуру ЭВМ определяет следующая группа характеристик:

· технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации т.д.);

· характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

· состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

К основным характеристикам ЭВМ относятся:

Быстродействие это число команд, выполняемых ЭВМ за одну секунду.

Сравнение по быстродействию различных типов ЭВМ, не обеспечивает достоверных оценок. Очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительность.

Производительность это объем работ, осуществляемых ЭВМ в единицу времени.

Применяются также относительные характеристики производительности. Фирма Intel для оценки процессоров предложила тест, получивший название индекс iCOMP (Intel ComparativeMicroprocessor Performance). При его определении учитываются четыре главных аспекта производительности: работа с целыми числами, с плавающей запятой, графикой и видео. Данные имеют 16- и 32-разрядной представление. Каждый из восьми параметров при вычислении участвует со своим весовым коэффициентом, определяемым по усредненному соотношению между этими операциями в реальных задачах. По индексу iCOMP ПМ Pentium 100 имеет значение 810, а Pentium 133-1000.

Емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находится в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен восьми битам). Следующими единицами измерения служат 1 Кбайт = 210 = 1024 байта, 1 Мбайт = 210 Кбайта = 220 байта, 1 Гбайт =210 Мбайта = 220 Кбайта = 230 байта.

Емкость оперативной памяти (ОЗУ) и емкость внешней памяти (ВЗУ) характеризуются отдельно. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Надежность это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO (Международная организация стандартов) 2382/14-78).

Высокая надежность ЭВМ закладывается в процессе ее производства. Применение сверхбольшие интегральные схемы (СБИС) резко сокращают число используемых интегральных схем, а значит, и число их соединений друг с другом. Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность это возможность различать почти равные значения (стандарт ISO - 2382/2-76).

Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Достоверность это свойство информации быть правильно воспринятой.

Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

Возможна следующая классификация ЭВМ:

– ЭВМ по принципу действия;

– ЭВМ по этапам создания;

– ЭВМ по назначению;

– ЭВМ по размерам и функциональным возможностям.

Классификация ЭВМ по принципу действия. Электронная вычислительная машина, компьютер - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

По принципу действия вычислительные машины делятся на три больших класса:

аналоговые (АВМ),

цифровые (ЦВМ)

гибридные (ГВМ).

Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают.

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения). АВМ машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2 –5%).На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

Классификация ЭВМ по этапам создания. По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е гг.: ЭВМ на электронно-вакуумных лампах;

2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3-е поколение, 70-е гг.: ЭВМ на полупроводниковых интегральных микросхемах с малой и средней степенью интеграции (сотни, тысячи транзисторов в одном корпусе);

4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах-микропроцессорах (десятки тысяч - миллионы транзисторов в одном кристалле);

5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6-е и последующие поколения: оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующие поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.

Классификация ЭВМ по назначению . По назначению ЭВМ можно разделить на три группы:

– универсальные (общего назначения),

– проблемно-ориентированные

– специализированные.

Универсальные ЭВМ предназначены для решения самых различных технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами. К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого крута задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами, устройства согласования и сопряжения работы узлов вычислительных систем.

Классификация ЭВМ по размерам и функциональным возможностям . По размерам и функциональным возможностям ЭВМ можно разделить на:

· сверхбольшие (суперЭВМ),

· большие (Mainframe),

· сверхмалые (микроЭВМ).

Персональные компьютеры можно классифицировать по типоразмерам . Так, различают настольные (desktop), портативные (notebook), карманные (palmtop) модели. Совсем недавно появились устройства, сочетающие возможности карманных персональных компьютеров и устройств мобильной связи. По-английски они называются РDА, Personal Digital Assistant. Пользуясь тем, что в русском языке за ними пока не закрепилось какое-либо название, их можно называть мобильными вычислительными устройствами (МВУ).

Настольные модели распространены наиболее широко. Они являются принадлежностью рабочего места. Эти модели отличаются простотой изменения конфигурации за счет несложного подключения дополнительных внешних приборов или установки дополнительных внутренних компонентов. Достаточные размеры корпуса в настольном исполнении позволяют выполнять большинство подобных работ без привлечения специалистов, а это позволяет настраивать компьютерную систему оптимально для решения именно тех задач, для которых она была приобретена.

Портативные модели удобны для транспортировки. Их используют бизнесмены, коммерсанты, руководители предприятий и организаций, проводящие много времени в командировках и переездах. С портативным компьютером можно работать при отсутствии рабочего места. Особая привлекательность портативных компьютеров связана с тем, что их можно использовать в качестве средства связи. Подключив такой компьютер к телефонной сети, можно из любой географической точки установить обмен данными между ним и центральным компьютером своей организации. Так производят обмен сообщениями, передачу приказов и распоряжений, получение коммерческих данных, докладов и отчетов. Для эксплуатации на рабочем месте портативные компьютеры не очень удобны, но их можно подключать к настольным компьютерам, используемым стационарно.

Карманные модели выполняют функции «интеллектуальных записных книжек». Они позволяют хранить оперативные данные и получать к ним быстрый доступ. Некоторые карманные модели имеют жестко встроенное программное обеспечение, что облегчает непосредственную работу, но снижает гибкость в выборе прикладных программ,

Мобильные вычислительные устройства сочетают в себе функции карманных моделей компьютеров и средств мобильной связи (сотовых радиотелефонов). Их отличительная особенность - возможность мобильной работы с Интернетом, а в ближайшем будущем и возможность приема телевизионных передач. Дополнительно МВУ комплектуют средствами связи по инфракрасному лучу, благодаря которым эти карманные устройства могут обмениваться данными с настольными ПК и друг с другом.

Многопользовательские микроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.

Персональные компьютеры (ПК) – однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.

Рабочие станции (work station) представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).

Серверы (server) – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Конечно, вышеприведенная классификация весьма условна, ибо мощная современная ПК, оснащенная проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательская микроЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.

Классификация по уровню специализации. По уровню специализации компьютеры делят на универсальные и специализированные. На базе универсальных компьютеров можно собирать вычислительные системы произвольного состава (состав компьютерной системы называется конфигурацией). Так, например, один и тот же персональный компьютер можно использовать для работы с текстами, музыкой, графикой, фото- и видеоматериалами.

Специализированные компьютеры предназначены для решения конкретного круга задач. К таким компьютерам относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Компьютеры, интегрированные в бытовую технику, например в стиральные машины, СВЧ-плиты и видеомагнитофоны, тоже относятся к специализированным. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль состояния бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы систем объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Их используют При подготовке кино- и видеофильмов, а также рекламной продукции. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.

Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.

Классификация по совместимости. В мире существует множество различных видов и типов компьютеров. Они выпускаются разными производителями, собираются из разных деталей, работают с разными программами. При этом очень важным вопросом становится совместимость различных компьютеров между собой. От совместимости зависит взаимозаменяемость узлов и приборов, предназначенных для разных компьютеров, возможность переноса программ с одного компьютера на другой и возможность совместной работы разных типов компьютеров с одними и теми же данными.

Аппаратная совместимость . По аппаратной совместимости различают так называемые аппаратные платформы. В области персональных компьютеров сегодня наиболее широко распространены две аппаратные платформы: 1ВМ РС и Аррlе Macintosh. Кроме них существуют и другие платформы, распространенность которых ограничивается отдельными регионами или отдельными отраслями. Принадлежность компьютеров к одной аппаратной платформе повышает совместимость между ними, а принадлежность к разным платформам - понижает.

Кроме аппаратной совместимости существуют и другие виды совместимости: совместимость на уровне операционной системы, программная совместимость, совместимость на уровне данных.

Классификация по типу используемого процессора . Процессор - основной компонент любого компьютера. В электронно-вычислительных машинах это специальный блок, а в персональных компьютерах - специальная микросхема, которая выполняет все вычисления. Даже если компьютеры принадлежат одной аппаратной платформе, они могут различаться по типу используемого процессора. Тип используемого процессора в значительной (хотя и не в полной) мере характеризует технические свойства компьютера.

Классификация по назначению - один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ, и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции.

Большие ЭВМ – э то самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainfram ). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ составляет до многих десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп.

Первая большая ЭВМ ЭНИАК (Electronic Numerical Integrator and Computer) была создана в 1946 г. (в 1996 г. отмечалось 50-летие создания первой ЭВМ). Эта машина имела массу более 50 т, быстродействие несколько сотен операций в секунду, оперативную память емкостью 20 чисел; занимала огромный зал площадью около 100кв.м.

Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.

Появление в 70-х гг. малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой - избыточностью ресурсов больших ЭВМ ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини-ЭВМ – вычислительной машины, относящейся по архитектуре, размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ - микро ЭВМ.

Центральный процессор

Рис. Структура современного вычислительного центра на базе большой ЭВМ

Классификация микроЭВМ:

· универсальные (многопользовательские, однопользовательские (персональные))

· специализированные (многопользовательские (серверы), однопользовательские (рабочие станции))

Именно наличие МП служило первоначально определяющим признаком микро ЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

Функциональные возможности ЭВМ обуславливают важнейшие технико-эксплуатационные характеристики:

· быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

· разрядность и формы представления чисел, с которыми оперирует ЭВМ;

· номенклатура, емкость и быстродействие всех запоминающих устройств;

· номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

· типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

· способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

· типы и технико-эксплуатационные характеристики операционных систем, используемых в машине;

· наличие и функциональные возможности программного обеспечения;

· способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

· система и структура машинных команд;

· возможность подключения к каналам связи и к вычислительной сети;

· эксплуатационная надежность ЭВМ;

· коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики

К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду.

Несмотря на широкое распространение персональных компьютеров, значение больших ЭВМ не снижается. Из-за высокой стоимости их обслуживания при работе больших ЭВМ принято планировать и учитывать каждую минуту. Для экономии времени работы больших ЭВМ малопроизводительные операции ввода, вывода и первичной подготовки данных выполняют с помощью персональной техники. Подготовленные данные передают на большую ЭВМ для выполнения наиболее ресурсоемких операций.

Центральный процессор - основной блок ЭВМ, в котором непосредственно и происходит обработка данных и вычисление результатов. Обычно центральный процессор представляет собой несколько стоек аппаратуры и размещается в отдельном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма.

Группа системного программирования занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования самой вычислительной системы. Работников этой группы называют системными программистами. Они должны хорошо знать техническое устройство всех компонентов ЭВМ, поскольку их программы предназначены в первую очередь для управления физическими устройствами. Системные программы обеспечивают взаимодействие программ более высокого уровня с оборудованием, то есть группа системного программирования обеспечивает программно-аппаратный интерфейс вычислительной системы.

Группа прикладного программирования занимается созданием программ для выполнения конкретных операций с данными. Работников этой группы называют прикладными программистами. В отличие от системных программистов им не надо знать техническое устройство компонентов ЭВМ, поскольку их программы работают не с устройствами, а с программами, подготовленными системными программистами. С другой стороны, с их программами работают пользователи, то есть конкретные исполнители работ. Поэтому можно говорить о том, что группа прикладного программирования обеспечивает пользовательский интерфейс вычислительной системы.

Группа подготовки данных занимается подготовкой данных, с которыми будут работать программы, созданные прикладными программистами. Во многих случаях сотрудники этой группы сами вводят данные с помощью клавиатуры, но они могут выполнять и преобразование готовых данных из одного вида в другой. Так, например, они могут получать иллюстрации, нарисованные художниками на бумаге, и преобразовывать их в электронный вид с помощью специальных устройств, называемых сканерами.

Группа технического обеспечения занимается техническим обслуживанием всей вычислительной системы, ремонтом и наладкой устройств, а также подключением новых устройств, необходимых для работы прочих подразделений.

Группа информационного обеспечения обеспечивает технической информацией все прочие подразделения вычислительного центра по их заказу. Эта же группа создает и хранит архивы ранее разработанных программ и накопленных данных. Такие архивы называют библиотеками программ или банками данных.

Отдел выдачи данных получает данные от центрального процессора и преобразует их в форму, удобную для заказчика. Здесь информация распечатывается на печатающих устройствах (принтерах) или отображается на экранах дисплеев.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

Мини-ЭВМ – от больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшей производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями, банками и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной.

На промышленных предприятиях мини-ЭВМ управляют производственными процессами, но могут сочетать управление производством с другими задачами. Например, они могут помогать экономистам в осуществлении контроля себестоимости продукции, нормировщикам в оптимизации времени технологических операций, конструкторам в автоматизации проектирования станочных приспособлений, бухгалтерии в осуществлении учета первичных документов и подготовки регулярных отчетов для налоговых органов. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Микро-ЭВМ – компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких-человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с компьютером, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.

Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его доводку и настройку, согласовывают его работу с другими программами и устройствами компьютера. Хотя программисты этой категории и не разрабатывают системные и прикладные программы, они могут вносить в них изменения, создавать или изменять отдельные фрагменты. Это требует высокой квалификации и универсальных знаний. Программисты, обслуживающие микро-ЭВМ, часто сочетают в себе качества системных и прикладных программистов одновременно.

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры.

Персональные компьютеры (ПК) – эта категория компьютеров получила особо бурное развитие в течение последних двадцати лет. Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места. Как правило, с персональным компьютером работает один человек. Несмотря на свои небольшие размеры и относительно невысокую стоимость, современные персональные компьютеры обладают немалой производительностью. Многие современные персональные модели превосходят большие ЭВМ 70-х годов, мини-ЭВМ 80-х годов и микро-ЭВМ первой половины 90-х годов. Персональный компьютер (Personal Computer , РС) вполне способен удовлетворить большинство потребностей малых предприятий и отдельных лиц.

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности должен иметь следующие характеристики:

· малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

· автономность эксплуатации без специальных требований к условиям окружающей среды;

· гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

· «дружественность» операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

· высокую надежность работы (более 5000 ч наработки на отказ).

За рубежом распространенными моделями компьютеров в настоящее время являются IВМ РС с микропроцессорами Рentium и Pentium Pro.

Отечественная промышленность (страны СНГ) выпускала DЕС –совместимые (диалоговые вычислительные ДВК-1 - ДВК- 4 на основе Электроники МС-1201, Электроники 85, Электроники 32 и др.) и IВМ РС-совместимые (ЕС1840 - ЕС1842, ЕС1845, ЕС1849, ЕС1861, Искра1030, Искра 4816, Нейрон И9.66 и др.) компьютеры. Сейчас подавляющее большинство отечественных персональных компьютеров собирается из импортных комплектующих и относится к IBM РС- совместимым.

Персональные компьютеры можно классифицировать по ряду признаков.

По поколениям персональные компьютеры делятся следующим образом:

· ПК 1-го поколения - используют 8-битные микропроцессоры;

· ПК 2-го поколения - используют 16-битные микропроцессоры;

· ПК 3-го поколения -используют 32-битные микропроцессоры;

· ПК 4-го поколения - используют 64-битные микропроцессоры.

· ПК 5-го поколения – используют 128-битные микропроцессоры.

Особенно широкую популярность персональные компьютеры получили после 1995 г. в связи с бурным развитием Интернета. Персонального компьютера вполне достаточно для использования всемирной сети в качестве источника научной, справочной, учебной, культурной и развлекательной информации. Персональные компьютеры являются также удобным средством автоматизации учебного процесса по любым дисциплинам, средством организации дистанционного (заочного) обучения и средством организации досуга. Они вносят большой вклад не только в производственные, но и в социальные отношения. Их нередко используют для организации надомной трудовой деятельности, что особенно важно в условиях ограниченной трудозанятости.

До последнего времени модели персональных компьютеров условно рассматривали в двух категориях: бытовые ПК и профессиональные ПК. Бытовые модели, как правило, имели меньшую производительность, но в них были приняты особые меры для работы с цветной графикой и звуком, чего не требовалось для профессиональных моделей. В связи с достигнутым в последние годы резким удешевлением средств вычислительной техники границы между профессиональными и бытовыми моделями в значительной степени стерлись, и сегодня в качестве бытовых нередко используют высокопроизводительные профессиональные модели, а профессиональные модели, в свою очередь, комплектуют устройствами для воспроизведения мультимедийной информации, что ранее было характерно для бытовых устройств. Под термином мультимедиа подразумевается сочетание нескольких видов данных в одном документе (текстовые, графические, музыкальные и видеоданные) или совокупность устройств для воспроизведения этого комплекса данных.

Начиная с 1999 г. в области персональных компьютеров начал действовать международный сертификационный стандарт - спецификация РС99. Он регламентирует принципы классификации персональных компьютеров и оговаривает минимальные и рекомендуемые требования к каждой из категорий. Новый стандарт устанавливает следующие категории персональных компьютеров:

Сonsumer РС (массовый ПК);

Оffice РС (деловой ПК);

Мobi1е РС (портативный ПК);

Workstation РС (рабочая станция);

Entertaimemt РС (развлекательный ПК).

Согласно спецификации РС99 большинство персональных компьютеров, присутствующих в настоящее время на рынке, попадают в категорию массовых ПК. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, то есть средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК – к средствам воспроизведения графики и звука.

Таким образом, в заключение можно сказать следующее. На настоящий момент существует множество систем и методов, принципов и оснований классификации ЭВМ. В данной работе были приведены наиболее распространенные классификации ЭВМ.

Таким образом, ЭВМ классифицируются по назначению (большие ЭВМ, мини-ЭВМ, микро-ЭВМ, персональные компьютеры), по уровню специализации (универсальные и специализированные), по типоразмерам (настольные, портативные, карманные, мобильные), по совместимости, по типу используемого процессора и др. Четких границ между классами компьютеров не существует. По мере совершенствования структур и технологии производства, появляются новые классы компьютеров, границы существующих классов существенно изменяются.

Наиболее ранним методов классификация является классификация ЭВМ по назначению.

Наиболее распространенным видом ЭВМ являются персональные компьютеры, подразделяющиеся на массовые, деловые, портативные, развлекательные и рабочие станции.

Деление компьютерной техники на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

По условиям эксплуатации компьютеры делятся на два типа: офисные (универсальные); специальные.

Офисные предназначены для решения широкого класса задач при нормальных условиях эксплуатации.

Специальные компьютеры служат для решения более узкого класса задач или даже одной задачи, требующей многократного решения, и функционируют в особых условиях эксплуатации. Машинные ресурсы специальных компьютеров часто ограничены. Однако их узкая ориентация позволяет реализовать заданный класс задач наиболее эффективно.


2. Шифратор, Дешифратор

Шифратором , или кодером называется комбинационное логическое устройство для преобразования чисел из десятичной системы счисления в двоичную. Входам шифратора последовательно присваиваются значения десятичных чисел, поэтому подача активного логического сигнала на один из входов воспринимается шифратором как подача соответствующего десятичного числа. Этот сигнал преобразуется на выходе шифратора в двоичный код. Согласно сказанному, если шифратор имеетn выходов, число его входов должно быть не более чем 2 n . Шифратор, имеющий 2 n входов и n выходов, называется полным . Если число входов шифратора меньше 2 n , он называется неполным .

Рассмотрим работу шифратора на примере преобразователя десятичных чисел от 0 до 9 в двоично-десятичный код. Таблица истинности, соответствующая этому случаю, имеет вид

Так как число входов данного устройства меньше 2 n = 16, имеем неполный шифратор. Используя таблицу для Q 3 , Q 2 , Q 1 и Q 0 , можно записать следующие выражения:

Полученная система ФАЛ характеризует работу шифратора. Логическая схема устройства, соответствующая системе приведена на рисунке ниже .


Похожая информация.


Принцип работы ЭВМ

В ЭВМ используется принцип программного управления . Один из способов его реализации был предложен в 1945 г. американским математиком Д. Нейманом, и с тех пор неймановский принцип программного управления используется в качестве основного принципа построения персональных ЭВМ. Этот принцип состоит в следующем:

информация кодируется в двоичной форме и разделяется на единицы информации - слова;

разнотипные слова информации различаются по способу использова­ния но не по способам кодирования;

слова информации размещаются в памяти ЭВМ и идентифицируют­ся номерами ячеек, которые называются номерами слов;

алгоритм представляется в виде последовательности управляющих слов - команд, которые определяют наименование операции и слова инфор­мации, участвующие в операциях. Алгоритм, представленный в терминах машинных команд, называется программой ;

выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом про­граммой. Первой выполняется, команда, заданная пусковым адресом програм­мы. Обычно это адрес первой команды программы. Адрес следующей команды однозначно определяется в процессе выполнения текущей команды и может быть либо адресом следующей по порядку команды, либо адресом любой дру­гой команды. Процесс вычислений продолжается до тех пор, пока не будет выполнена команда, предписывающая прекращение вычислений.

Характеристики ЭВМ определяют её назначение, область применения и потребительские качества. К ним относятся следующие показатели:

1. Состав и типы подключаемых внешних устройств;

2. Тип процессора. Наибольшее распространение в персональных ЭВМ в настоящее время имеют процессоры Pentium III, Pentium 4, Celeron фирмы Intel, K5, K6, K7 (Athlon), Duron фирмы AMD.

3. Разрядность. Разрядность ЭВМ определяется разрядностью процессора и характеризует точность вычислений и производительность машины. Различают 8-, 16-, 32- разрядные ЭВМ.

4. Быстродействие - число элементарных операций, выполняемых в единицу времени (оп/с). Быстродействие определяется тактовой частотой задающего генератора. Первые ПК имели тактовую частоту 4, 8, 16 МГц. В настоящее время частота тактового генератора достигает 2 ГГц и, и будет повышаться далее в связи с освоением новых технологий. Например, в ноябре 2000 г. был выпущен процессор Pentium 4 с тактовой частотой 1,5 ГГц, изготовленный по 0,18 микронной технологии (под технологией процессора понимается наименьший размер одного элемента, например транзистора, диода, конденсатора). А в настоящее время уже выпускаются процессоры данного типа с тактовой частотой 2 ГГц.

5. Ёмкость памяти (Кбайт) определяет возможности ЭВМ по использованию современных пакетов прикладных программ. Установленная оперативная память достигает 256 Мбайт, КЭШ – память первого и второго уровней составляет 128 - 256 Кбайт.

6. Ёмкость внешних запоминающих устройств (ВЗУ) определяет объём хранимой и используемой информации. Емкость накопителей на жестком диске достигает 100 Гбайт.

7. Программное обеспечение: операционная система, системы программирования, пакеты прикладных программ.

8. Массогабаритные характеристики.